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Advantages of DNA for Molecular Electronics

DNA possesses several essential properties for
molecular electronics

* Molecular recognition:

— can drive fabrication of devices and integrated circuits from elementary
building blocks

— can rearrange upon interaction with specially designed molecules

« Self-assembling ability

— capability of molecules to self-organize in supramolecular aggregates.
DNA can assemble into pre-programmed complicated constructions

* High density of information (4-bit system)
* Accurate synthesis and precise structure
Well developed enzymatic machinery



Brief History of DNA electronics

J.Barton et al, "Oxidative damage through long-range electron transfer”, Nature
382, p.731 (1996)

« Short dsDNA oligomer with tethered Rh(phi),DMB3* intercalator were
designed, where the place of intercalation and the place of possible
oxidation damage were spatially separated.

« Electron donating ability goes like 5’-GA-3’, 5’-GG-3’, 5’-GGG-3’ (place of

the oxidative damage "bolded”) Ay
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Brief History of DNA electronics

* Photo-oxidative damage occurs at a
distance of 17A and 34A from the
intercalation site with the intensity of
damage even higher at the distal GG
doublet

 the transfer is intramolecular, the P32-

labelled molecules (w/o Rh-intercalator)
added to the solution were not damaged

J.Barton et al, "Oxidative damage through long-
range electron transfer”, Nature 382, p.731 (1996)
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Brief History of DNA electronics

S.Kelley and J.Barton, "Electron transfer between bases in double helical DNA”,
Science 283, p.375 (1999)

* Fluorescent analogues of A (adenine) were usedto |, LLM N,
investigate photoinduced charge transport through {1‘ ,ﬂ: A
DNA Tr-stack ron T

« donor (A2 or Ag) and quencher (G) were placed into
the sequence of DNA

* investigated donor-acceptor distances 3.4, 6.8, 10.2
and 13.9A.

. found for intrastrand B ~ 0.1 A", for interstrand B ~
1.7 A,

From the previous lectures:
for the case of non-resonant coherent transport R ocexp(f-d)

typically, for phenyl monolayer B ~ 0.4 A-', for alkane thiols monolayer B ~ 0.94 A1
D.Frisbie et al, J.Phys.Chem. B. 106, p.2813 (2002)



Brief History of DNA electronics
« Hans-Werner Fink & Christian Schoenenberger, NATURE

398, p.407 (1999)

» Low-energy electron source (LEEPS
microscope, V=20-300V) used to image A-DNA
(deposited on a metal grid with 2um holes) and
observe the tungsten manipulation tip

« Conduction measurements through bundles ﬂ
(approx 600nm long) of DNA:

DNA exhibit linear IV-curves (metallic)

« should not be related to ionic transport in
water (measurements in vacuum)

« probablv a ballistic wire?
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Brief History of DNA electronics

Danny Porath, Alexey Bezryadin, Simon de Vries & Cees Dekker, “Direct
measurement of electrical transport through DNA molecules”, Nature 403,

635 (2000)

30bp (10.4nm long) DNA polyC-polyG
electrostatically trapped between Pt-
electrodes

Measurements from RT down to 4K

Molecules can reproducibly (no electrical

damage (discharge) like would be in the
case of an insulator)

Overall semiconductor behaviour with a
gap and switching between several
possible configurations was observed

Dnase assay proved no conductance
after Dnase cutting of the trapped
molecules
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Brief History of DNA electronics

A. Yu. Kasumov, M. Kociak, S. Gueron, B. Reulet, V. T. Volkov, D. V.
Klinov, H. Bouchiat, “Proximity-Induced Superconductivity in DNA”,

Science 291, 280 (2001)

Experimental:

A-DNA deposited (flow combed)
on superconducting Re/C
electrodes

Low temperature measurements
RT down to 0.05K

A

0.5 umI




Brief History of DNA electronics

« H.Watanabe et al, Single molecule DNA device measured with triple-probe
atomic force microscope, Appl.Phys. Lett. 79, p.2462 (2001)
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No conductance... Contact resistance?



/ Detectable wires
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While having similar topography, DNA molecules are not detectable by EFM. R>1016
Ohm/cm



Brief History of DNA electronics

Review of experiments: Porath et. al. in Topics in Current Chemistry, Ed. G. Shuster, Vol.
273, (2004)

« Charge can be transported [+ -
along short and single ;
DNA polymers

« Charge can possibly be transported in bundles
and networks




Brief History of DNA electronics

Problems

The molecules are sensitive to the enviromental conditions
(humidity, buffer composition etc.)

Exact configuration of a soft polymer is difficult to control and
predict.

Contact are irreproducible and difficult to control



Current research

e Qur group is a part of EU consortium on DNA nanodevices
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Current research

e Qur group is a part of EU consortium on DNA nanodevices

Find optimal DNA-based structure (G4 is currently in favour)

~~— Optimize charge
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contacts

Optimize surface or DNA coating to
reduce the DNA deformation

Eventually create
complicated >
functional devices




Current research

 Possible DNA devices:
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The Structure of duplex DNA
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The Structure of triplex DNA

R Hoogsteen base pairing




Current research
 New DNA derivative: Triplex-DNA (Kotlyar et al)
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Current research
 New DNA derivative: Triplex-DNA (Kotlyar et al)
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Current research
 New DNA derivative: G4 DNA (

Kotlyar et al)
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The Structure of G-quadruplex (4G)




Current research

 Production of G4-DNA

GGGGGGGGGEGGEEEEEEEEEEEEEEEEE
CCCCCCCCCCCLCLeeeeeeecceecececece

pH 13

H7

® Dissociation Poly(G) and Poly(C) strands at high pH
® Folding the PolyG strand into G4-DNA upon lowering pH



Current research
* Production of G4-DNA -

Very
difficult to
producelll

>

Low
concentration T
of 6-strands
High
Single poly(6) strand concentration

of G-strands

® Note the 4:1 length-ratio => intra-molecular 4-folding
® Length-ratio is consistent with AFM characterization (shown later)



Current research
* Production of G4-DNA:4-Stranded G4-DNA with Biotin-Avidin
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® Our solution for 4-stranded 64-DNA construction
® Potential junctions...



Current research

* Production of stable complexes with TMPyP

N

€ Motivation:

+ Covalent contact to electrodes

*Enhance electrical conductivity R




Current research
« DNA derivative: M-DNA

® Enzymatic production of long Poly(G)-Poly(C)
® Complexation with Ag!* and Cu'*

® Stoichiometry: 1 ion:1 bp

¢ High stability
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Current research

Polyaniline coating (poly(G)-Poly(C) (S. Yitzchaik et al)
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¢ Two synthetic routes

(Oxidative and photochemical)
# Mechanistic and Photo-

electrochemical investigation




Current research
 MMX-polymer — DNA hybrids (F. Zamorra et al)
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Current research

* AFM characterization with high resolution tips
Ultra sharp tips Conventional tips




Our activities

« Electrodes design




* DNA deposition

dsDNA
on APTMS

phosphothiolated dsDNA
SN APIIIS EUAEES dsDNA-NP dimers

on APTMS
surface



Peptide (AMP) coated DNA

short AMP and toxin
peptides can bind to
DNA;

interaction can be
tuned by structure of
a peptide

continuos tube with
~1nm increase in
diameter can be
formed

route to functional
layer on DNA:
coating with short

peptides
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Binding of IL4 to monomolecular G4
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