

Charge transport in DNA

Advantages of DNA for Molecular Electronics

DNA possesses several essential properties for molecular electronics

- Molecular recognition:
 - can drive fabrication of devices and integrated circuits from elementary building blocks
 - can rearrange upon interaction with specially designed molecules
- Self-assembling ability
 - capability of molecules to self-organize in supramolecular aggregates.
 DNA can assemble into pre-programmed complicated constructions
- High density of information (4-bit system)
- Accurate synthesis and precise structure
- Well developed enzymatic machinery

J.Barton et al, "Oxidative damage through long-range electron transfer", Nature 382, p.731 (1996)

 Short dsDNA oligomer with tethered Rh(phi)₂DMB³⁺ intercalator were designed, where the place of intercalation and the place of possible oxidation damage were spatially separated.

direct photocleavage

- Photo-oxidative damage occurs at a distance of 17Å and 34Å from the intercalation site with the intensity of damage even higher at the distal GG doublet
- the transfer is intramolecular, the P³²labelled molecules (w/o Rh-intercalator) added to the solution were not damaged

S.Kelley and J.Barton, "Electron transfer between bases in double helical DNA", Science 283, p.375 (1999)

- Fluorescent analogues of A (adenine) were used to investigate photoinduced charge transport through DNA π-stack
- donor (A2 or Aε) and quencher (G) were placed into the sequence of DNA
- investigated donor-acceptor distances 3.4, 6.8, 10.2 and 13.9Å.
- found for intrastrand $\beta \sim 0.1 \text{ Å}^{-1}$, for interstrand $\beta \sim 1.7 \text{ Å}^{-1}$.

 A_{ϵ}

 A_2

From the previous lectures: for the case of non-resonant coherent transport $R \propto \exp(\beta \cdot d)$ typically, for phenyl monolayer $\beta \sim 0.4 \text{ Å}^{-1}$, for alkane thiols monolayer $\beta \sim 0.94 \text{ Å}^{-1}$ *D.Frisbie et al, J.Phys.Chem. B. 106, p.2813 (2002)*

- Hans-Werner Fink & Christian Schoenenberger, NATURE 398, p.407 (1999)
- Low-energy electron source (LEEPS microscope, V=20-300V) used to image λ-DNA (deposited on a metal grid with 2µm holes) and observe the tungsten manipulation tip

- Conduction measurements through bundles (approx 600nm long) of DNA:
 - DNA exhibit linear IV-curves (metallic)
 - should not be related to ionic transport in water (measurements in vacuum)
 - probably a ballistic wire?

- Danny Porath, Alexey Bezryadin, Simon de Vries & Cees Dekker, "Direct measurement of electrical transport through DNA molecules", Nature 403, 635 (2000)
- 30bp (10.4nm long) DNA polyC-polyG electrostatically trapped between Ptelectrodes
- Measurements from RT down to 4K
- Molecules can reproducibly (no electrical damage (discharge) like would be in the case of an insulator)
- Overall semiconductor behaviour with a gap and switching between several possible configurations was observed
- Dnase assay proved no conductance after Dnase cutting of the trapped molecules

 A. Yu. Kasumov, M. Kociak, S. Gueron, B. Reulet, V. T. Volkov, D. V. Klinov, H. Bouchiat, "Proximity-Induced Superconductivity in DNA", Science 291, 280 (2001)

Experimental:

- λ-DNA deposited (flow combed) on superconducting Re/C electrodes
- Low temperature measurements RT down to 0.05K

• H.Watanabe et al, Single molecule DNA device measured with triple-probe atomic force microscope, Appl.Phys. Lett. 79, p.2462 (2001)

Stretching between the contacts

No conductance... Contact resistance?

EFM on Nanotubes and λ - DNA

EFM phase image of carbon nanotubes deposited on the Si/SiO₂

EFM on Nanotubes and λ - DNA II

Topography

While having similar topography, DNA molecules are not detectable by EFM. R>10¹⁶ Ohm/cm

Review of experiments: Porath et. al. in Topics in Current Chemistry, Ed. G. Shuster, Vol. 273, (2004)

- Charge can be transported along short and single DNA polymers
- Charge can possibly be transported in bundles and networks

Problems

- The molecules are sensitive to the environmental conditions (humidity, buffer composition etc.)
- Exact configuration of a soft polymer is difficult to control and predict.
- Contact are irreproducible and difficult to control

• Our group is a part of EU consortium on DNA nanodevices

• Our group is a part of EU consortium on DNA nanodevices

Possible DNA devices:

The Structure of duplex DNA

Base-Pairing

The Structure of triplex DNA

• New DNA derivative: Triplex-DNA (Kotlyar et al)

• New DNA derivative: Triplex-DNA (Kotlyar et al)

Duplex

synthesis

of

Time

Triplex + Duplex

R

,^{'n}∼_H

`R

• New DNA derivative: G4 DNA (Kotlyar et al)

The Structure of G-quadruplex (4G) DNA

K⁺ or Na⁺ _____

Production of G4-DNA

- Dissociation Poly(G) and Poly(C) strands at high pH
- Folding the PolyG strand into G4-DNA upon lowering pH

Production of G4-DNA

Note the 4:1 length-ratio => intra-molecular 4-folding

Length-ratio is consistent with AFM characterization (shown later)

• Production of G4-DNA:4-Stranded G4-DNA with Biotin-Avidin

- Our solution for 4-stranded G4-DNA construction
- Potential junctions...

R

Gold electrode

GANITE

- Production of stable complexes with TMPyP
- Motivation:
 - Covalent contact to electrodes
 - Enhance electrical conductivity

- DNA derivative: M-DNA
 - Enzymatic production of long Poly(G)-Poly(C)
 - Complexation with Ag¹⁺ and Cu¹⁺
 - Stoichiometry: 1 ion:1 bp
 - High stability

• Polyaniline coating (poly(G)-Poly(C) (S. Yitzchaik et al)

- Two synthetic routes
 (Oxidative and photochemical)
- Mechanistic and Photo electrochemical investigation

• MMX-polymer – DNA hybrids (F. Zamorra et al)

• AFM characterization with high resolution tips Ultra sharp tips Conventional tips

• Electrodes design

Our activities

• DNA deposition

phosphothiolated dsDNA on APTMS surface

dsDNA-NP dimers on APTMS surface

dsDNA on APTMS surface

Peptide (AMP) coated DNA

- short AMP and toxin peptides can bind to DNA;
- interaction can be tuned by structure of a peptide
- continuos tube with ~1nm increase in diameter can be formed
- route to functional layer on DNA: coating with short peptides

T=2.42ns

Binding of IL4 to monomolecular G4

